15 research outputs found

    A FRACTAL MINKOWSKI DESIGN FOR MICROWAVE SENSING APPLICATIONS

    Get PDF
    This work describes a low-cost, extremely sensitive microwave sensor that may be used to distinguish between different liquid samples by measuring the variation in S21 magnitude. An interdigital capacitor (IDC) in series with a circular spiral inductor (CSI) and linked directly to a light dependent resistor (LDR) is used to do this and been installed minkowski farctal on end both stub. The suggested sensor operates at a frequency of 1.47 GHz. Using Computer Simulation Technology (CST) Microwave studio, the impacts of modifying the proposed LDR's value are evaluated parametrically. However, When the LDR value changes in relation to the light of incidence, a considerable change in the resonance band is observed. Many recent wireless technologies that use optical-based interface systems have found that such technology is an excellent candidate. The same model is developed for validation using a High-Frequency Simulator Structure (HFSS). The suggested sensor is built on an FR4 substrate with a 40×60 mm2 surface area. As a ground plane, a copper layer is applied to the rear panel. The results obtained by the two software systems are in perfect agreement

    Optical-Microwave Sensor for Real-Time Measurement of Water Contamination in Oil Derivatives  

    Get PDF
    This paper presents a novel microwave sensor using optical activation for measuring in real-time the water contamination in crude oil or its derivatives. The sensor is constructed from an end-coupled microstrip resonator that is interconnected to two pairs of identical fractal structures based on Moore curves. Electromagnetic (EM) interaction between the fractal curves is mitigated using a T-shaped microstrip-stub to enhance the performance of the sensor. The gap in one pair of fractal curves is loaded with light dependent resistors (LDR) and the other pair with microwave chip capacitors. The chip capacitors were used to increase the EM coupling between the fractal gaps to realize a high Q-factor resonator that determines the sensitivity of the sensor. Empirical results presented here show that the insertion-loss of the sensor is affected by the change in LDR impedance when illuminated by light. This property is used to determine the amount of water contaminated oil. The sensitivity of the sensor was optimized using commercial 3D EM solver. The measurements were made by placing a 30 mm diameter petri dish holding the sample on top of the sensor. The petri dish was filled up to a height of 10 mm with the sample of water contaminated crude oil, and the measurements were done in the range between 0.76 GHz to 1.2 GHz. The Q-factor of the oil sample with no water contamination was 70 and the Q-factor declined to 20 for 100% contamination. The error in the measurements was less than 0.024%. The sensor has dimensions of 0.1270×0.1270×0.0040 and represents a new modality. Compared to existing techniques, the proposed sensor is simple to use, readily portable and is more sensitive

    Photonic controlled metasurface for intelligent antenna beam steering applications including 6G mobile communication systems

    Get PDF
    This paper presents a novel metasurface antenna whose radiation characteristics can be remotely controlled by optical means using PIN photodiodes. The proposed reconfigurable antenna is implemented using a single radiating element to minimize the size and complexity. The antenna is shown to exhibit a large impedance bandwidth and is capable of radiating energy in a specified direction. The proposed antenna consists of a standard rectangular patch on which is embedded an H-tree shaped fractal slot of order 3. The fractal slot is used to effectively reduce the physical size of the patch by 75 % and to enhance its impedance bandwidth. A metasurface layer is strategically placed above the patch radiator with a narrow air gap between the two. The metasurface layer is a lattice pattern of square framed rhombus ring shaped unit-cells that are interconnected by PIN photodiodes. The metasurface layer essentially acts like a superstrate when exposed to RF/microwave radiation. Placed below the patch antenna is a conductive layer that acts like a reflector to enhance the front-toback ratio by blocking radiation from the backside of the patch radiator. The patch’s main beam can be precisely controlled by photonically illuminating the metasurface layer. The antenna’s performance was modelled and analyzed with a commercial 3D electromagnetic solver. The antenna was fabricated on a standard dielectric substrate FR4 and has dimensions of 0.778λo × 0.778λo × 0.25λo mm3 , where λo is the wavelength of free space centered at 1.35 GHz. Measured results confirm the antenna’s performance. The antenna exhibits a wide fractional band of 55.5 % from 0.978 to 1.73 GHz for reflection-coefficient (S11) better than − 10 dB. It has a maximum gain of 9 dBi at 1.35 GHz with a maximum front-to-back ratio (F/B) of 21 dBi. The main beam can be steered in the elevation plane from − 24◦ to +24◦. The advantage of the proposed antenna is it does not require any mechanical movements or complicated electronic systems.Dr. Mohammad Alibakhshikenari acknowledges support from the CONEX-Plus programme funded by Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 801538. The authors also sincerely appreciate funding from Researchers Supporting Project number (RSP2023R58), King Saud University, Riyadh, Saudi Arabia. Additionally, this work was supported by Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (Agencia Estatal de Investigación, Fondo Europeo de Desarrollo Regional -FEDER-, European Union) under the research grant PID2021-127409OB-C31 CONDOR. Besides above, the Article Processing Charge (APC) was afforded by Universidad Carlos III de Madrid (Read & Publish Agreement CRUE-CSIC 2023)

    Design of a Planar Sensor Based on Split-Ring Resonator for Non-invasive Permittivity Measurement

    Get PDF
    The permi)ivity of a material is an important parameter to characterize the degree of polarization of a material and identify components and impurities. This paper presents a non-invasive measurement technique to characterize materials in terms of their permi)ivity based on a modified metamaterial unit-cell sensor. The sensor consists of a complementary split-ring resonator (C-SRR), but its fringe electric field is contained with a conductive shield to intensify the normal component of the electric field. It is shown that by tightly electromagnetically coupling opposite sides of the unit-cell sensor to the input/output microstrip feedlines, two distinct resonant modes are excited. Perturbation of the fundamental mode is exploited here for determining the permi)ivity of materials. The sensitivity of the modified metamaterial unit-cell sensor is enhanced four-fold by using it to construct a tri-composite split-ring resonator (TC-SRR). The measured results confirm that the proposed technique provides an accurate and inexpensive solution to determine the permi)ivity of materials

    Minkowski based microwave resonator for material detection over sub-6 GHz 5G spectrum

    Get PDF
    This paper describes the performance of a low-cost, high-sensitive microwave resonator for 5G modern wireless communication systems operating through sub-6GHz spectrum. Here, the proposed resonator is constructed from a Minkowski fractal open stub that is coupled to an interdigital capacitor. It is fetched to a circular spiral inductor structure with a back loop to increase the resonator quality and it operates at a frequency resonance of 524 MHz. Since the purpose of the study is to apply such technology to characterize liquid properties, the presented resonator is mounted on an FR4 substrate with a thickness of 1.6 mm and an area of 40×60 mm2, Using CST MWS commercial software, the resulting design dimensions are optimized. The proposed design performance which is demonstrated in terms of S21 magnitude is found to vary significantly by the variations in the photo-resistor. Such a property motivated the authors to consider it for material detection as the frequency stability with a photo-resistor value change is relative to the light incidence. In such a manner, the achieved results are found to behave linearly without discrepancy due to the effects of diffraction from the resonator layers. This technology is frequently used as a strong contender for a variety of contemporary wireless technologies that may invoke optical-based interface systems

    Photonic controlled metasurface for intelligent antenna beam steering applications including 6G mobile communication systems

    Get PDF
    This paper presents a novel metasurface antenna whose radiation characteristics can be remotely controlled by optical means using PIN photodiodes. The proposed reconfigurable antenna is implemented using a single radiating element to minimize the size and complexity. The antenna is shown to exhibit a large impedance bandwidth and is capable of radiating energy in a specified direction. The proposed antenna consists of a standard rectangular patch on which is embedded an H-tree shaped fractal slot of order 3. The fractal slot is used to effectively reduce the physical size of the patch by 75 % and to enhance its impedance bandwidth. A metasurface layer is strategically placed above the patch radiator with a narrow air gap between the two. The metasurface layer is a lattice pattern of square framed rhombus ring shaped unit-cells that are interconnected by PIN photodiodes. The metasurface layer essentially acts like a superstrate when exposed to RF/microwave radiation. Placed below the patch antenna is a conductive layer that acts like a reflector to enhance the front-toback ratio by blocking radiation from the backside of the patch radiator. The patch’s main beam can be precisely controlled by photonically illuminating the metasurface layer. The antenna’s performance was modelled and analyzed with a commercial 3D electromagnetic solver. The antenna was fabricated on a standard dielectric substrate FR4 and has dimensions of 0.778λo × 0.778λo × 0.25λo mm3, where λo is the wavelength of free space centered at 1.35 GHz. Measured results confirm the antenna’s performance. The antenna exhibits a wide fractional band of 55.5% from 0.978 to 1.73 GHz for reflection-coefficient (S11) better than −10 dB. It has a maximum gain of 9 dBi at 1.35 GHz with a maximum front-to-back ratio (F/B) of 21 dBi. The main beam can be steered in the elevation plane from − 24◦ to +24◦. The advantage of the proposed antenna is it does not require any mechanical movements or complicated electronic systems

    Design of a planar sensor based on split-ring resonators for non-invasive permittivity measurement

    Get PDF
    The permittivity of a material is an important parameter to characterize the degree of polarization of a material and identify components and impurities. This paper presents a non-invasive measurement technique to characterize materials in terms of their permittivity based on a modified metamaterial unit-cell sensor. The sensor consists of a complementary split-ring resonator (C-SRR), but its fringe electric field is contained with a conductive shield to intensify the normal component of the electric field. It is shown that by tightly electromagnetically coupling opposite sides of the unit-cell sensor to the input/output microstrip feedlines, two distinct resonant modes are excited. Perturbation of the fundamental mode is exploited here for determining the permittivity of materials. The sensitivity of the modified metamaterial unit-cell sensor is enhanced four-fold by using it to construct a tri-composite split-ring resonator (TC-SRR). The measured results confirm that the proposed technique provides an accurate and inexpensive solution to determine the permittivity of materials

    Optical-microwave sensor for real-time measurement of water contamination in oil derivatives

    Get PDF
    This paper presents a novel microwave sensor using optical activation for measuring in real-time the water contamination in crude oil or its derivatives. The sensor is constructed from an end-coupled microstrip resonator that is interconnected to two pairs of identical fractal structures based on Moore curves. Electromagnetic (EM) interaction between the fractal curves is mitigated using a T-shaped microstrip-stub to enhance the performance of the sensor. The gap in one pair of fractal curves is loaded with light dependent resistors (LDR) and the other pair with microwave chip capacitors. The chip capacitors were used to increase the EM coupling between the fractal gaps to realize a high Q-factor resonator that determines the sensitivity of the sensor. Empirical results presented here show that the insertion-loss of the sensor is affected by the change in LDR impedance when illuminated by light. This property is used to determine the amount of water contaminated oil. The sensitivity of the sensor was optimized using commercial 3D EM solver. The measurements were made by placing a 30 mm diameter petri dish holding the sample on top of the sensor. The petri dish was filled up to a height of 10 mm with the sample of water contaminated crude oil, and the measurements were done in the range between 0.76 GHz and 1.2 GHz. The Q-factor of the oil sample with no water contamination was 70 and the Q-factor declined to 20 for 100% contamination. The error in the measurements was less than 0.024%. The sensor has dimensions of 0.127λo × 0.127λo × 0.004 λo and represents a new modality. Compared to existing techniques, the proposed sensor is simple to use, readily portable and is more sensitive

    A New Microwave Sensor Based on the Moore Fractal Structure to Detect Water Content in Crude Oil

    No full text
    This paper presents a microwave sensor based on a two-ports network for liquid characterizations. The proposed sensor is constructed as a miniaturized microwave resonator based on Moore fractal geometry of the 4th iteration. The T-resonator is combined with the proposed structure to increase the sensor quality factor. The proposed sensor occupies an area of 50 × 50 × 1.6 mm3 printed on an FR4 substrate. Analytically, a theoretical study is conducted to explain the proposed sensor operation. The proposed sensor was fabricated and experimentally tested for validation. Later, two pans were printed on the sensor to hold the Sample Under Test (SUT) of crude oil. The frequency resonance of the proposed structure before loading SUT was found to be 0.8 GHz. After printing the pans, a 150 MHz frequency shift was accrued to the first resonance. The sensing part was accomplished by monitoring the S-parameters in terms of S12 regarding the water concentration change in the crude oil samples. Therefore, 10 different samples with different water percentages were introduced to the proposed sensor to be tested for detecting the water content. Finally, the measurements of the proposed process were found to agree very well with their relative simulated results
    corecore